午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线

基于稀疏注意力的雷達回波外推方法及應用
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

四川省科技計劃項目(2023JDZH0034)、四川省科技成果轉移轉化示范項目(2024ZHGG0026)資助


Research on Radar Echo Extrapolation Method Based on Sparse Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于深度學習的雷達回波外推方法已被廣泛應用于具有挑戰性的短臨降水預報任務中。然而,現有方法在預測精度上存在不夠高的問題,而且在處理高分辨率和長時間序列數據時,訓練速度較慢。為此,本文提出了一種基于稀疏融合注意力的深度學習模型——PFA-TransUNet(Probsparse Fusion Attention TransUNet)。該模型是一種編碼器-解碼器架構,通過在編碼器路徑中引入多層Transformer,然后將傳統多頭自注意力分解為時空維度計算,從而充分融合時空信息。同時,引入稀疏注意力方法,降低了自注意力計算復雜度,縮短了訓練時間。在河北省雷達數據集上的實驗結果表明,與其他先進的經典模型相比,PFA-TransUNet在外推精度,均方根誤差,結構相似性,雷達回波為20、30、40 dBz時的臨界成功指數,訓練速度等多個評價指標上均有所提升,展現出了優異的整體性能。

    Abstract:

    The deep learning-based radar echo extrapolation method is widely applied to the challenging task of short-term precipitation forecasting. However, existing methods still face issues with prediction accuracy, and when dealing with high-resolution and long-time sequence data, the training speed tends to be slow. To address these problems, this paper proposes a deep learning model based on sparse fusion attention - PFA-TransUNet (ProbSparse Fusion Attention TransUNet). This model is an encoder-decoder architecture, where a multi-layer Transformer is introduced in the encoder path. It then decomposes the traditional multi-head self-attention mechanism into computations in the spatiotemporal dimensions, allowing for the full integration of spatiotemporal information. In addition, the sparse attention method is incorporated to reduce the computational complexity of self-attention, significantly shortening the training time. Experimental results on the Hebei Province radar dataset show that compared to other advanced classical models, PFA-TransUNet outperforms them in various evaluation metrics such as extrapolation accuracy, Mean Squared Error (MSE), Structural Similarity Index (SSIM), Critical Success Index (CSI) at 20, 30, and 40 dBz, and training speed. The model demonstrates exceptional overall performance. In recent years, radar echo extrapolation becomes an increasingly important approach in precipitation forecasting, especially for nowcasting (short-term forecasting) tasks, where the ability to predict precipitation with high accuracy and efficiency is critical. However, due to the complex spatiotemporal nature of radar echoes, previous methods struggle to efficiently capture both spatial and temporal dependencies, which leads to suboptimal forecasting results. Furthermore, the computational cost associated with high-resolution and long-time series data further hampers the efficiency of current deep learning models. PFA-TransUNet addresses these limitations by incorporating a sparse attention mechanism, which helps reduce the computational load without sacrificing model performance. Traditional self-attention mechanisms in Transformer models can be computationally expensive due to the quadratic complexity of attention calculations, especially when applied to large datasets. By leveraging sparse attention, the proposed model focuses on the most relevant parts of the input data, thus improving computational efficiency and speeding up training. Another key feature of PFA-TransUNet is its ability to effectively model spatiotemporal dependencies. By decomposing the multi-head self-attention into spatiotemporal dimensions, the model captures the intricate relationships between space and time, leading to more accurate extrapolations of radar echoes. This is crucial in precipitation forecasting, as both spatial distribution and temporal evolution play a significant role in the prediction accuracy. The experimental results from the Hebei radar dataset indicate that PFA-TransUNet achieves superior performance compared to traditional models. The model shows a substantial improvement in forecast accuracy, with lower MSE values and higher SSIM scores, indicating better preservation of the structure of radar echoes. Furthermore, the model excels in terms of CSI at different dBz thresholds, demonstrating its robustness in detecting precipitation events under various conditions. Most importantly, the model’s training speed is significantly improved due to the sparse attention mechanism, making it suitable for real-time forecasting applications. In conclusion, PFA-TransUNet presents a promising solution for radar echo extrapolation tasks, especially in the context of short-term precipitation forecasting. Its combination of sparse fusion attention and spatiotemporal modelling makes it a powerful tool for improving the accuracy and efficiency of radar-based forecasting systems.

    參考文獻
    相似文獻
    引證文獻
引用本文

王杰,陳靜,楊昊,陳敏,周航,王勇.基于稀疏注意力的雷達回波外推方法及應用[J].氣象科技,2025,53(4):468~478

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-11-07
  • 定稿日期:2025-01-24
  • 錄用日期:
  • 在線發布日期: 2025-08-27
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
尹人成人综合网| 欧美日本在线视频| 久久性天堂网| 欧美国产1区2区| 黑丝一区二区| 在线观看日韩一区| 亚洲精品欧美专区| 亚洲欧美中文在线视频| 亚洲中无吗在线| 亚洲性人人天天夜夜摸| 午夜精品福利一区二区蜜股av| 亚洲另类一区二区| 亚洲一区国产精品| 国产日韩欧美高清| 亚洲免费观看在线观看| 中日韩视频在线观看| 亚洲无限乱码一二三四麻| 西西裸体人体做爰大胆久久久| 久久久精品国产免大香伊| 久久九九热免费视频| 久久综合久色欧美综合狠狠| 久久综合久久久久88| 欧美高清在线| 精品999在线播放| 麻豆91精品91久久久的内涵| 中文在线资源观看网站视频免费不卡| 亚洲狠狠丁香婷婷综合久久久| 日韩午夜电影| 久久精品最新地址| 欧美国产一区视频在线观看| 欧美日韩免费网站| 国产精品男女猛烈高潮激情| 精品动漫3d一区二区三区免费版| 99在线|亚洲一区二区| 亚洲精品久久在线| 亚洲自拍偷拍福利| 免费成年人欧美视频| 国产精品免费一区二区三区在线观看| 欧美日韩在线第一页| 国产一区二区三区网站| 国产永久精品大片wwwapp| 亚洲人成高清| 久久爱www久久做| 欧美日韩一区二区三区免费看| 国产精品久久久久久五月尺| 亚洲精品日韩激情在线电影| 亚洲制服丝袜在线| 欧美日韩一区二区免费在线观看| 亚洲国产天堂久久国产91| 欧美天堂在线观看| 亚洲韩国日本中文字幕| 欧美一区二区在线观看| 欧美激情网站在线观看| 国产欧美视频一区二区| 亚洲免费一在线| 欧美日韩成人| 91久久国产综合久久| 亚洲女优在线| 欧美四级电影网站| 亚洲美女精品成人在线视频| 老司机免费视频久久| 国内精品美女在线观看| 欧美日韩国产在线一区| 亚洲精品国产品国语在线app| 久久精品国产99国产精品澳门| 久久av在线看| 国产日韩欧美一区二区| 亚洲欧美成人在线| 亚洲第一黄色网| 欧美一区二区在线观看| 国产欧美va欧美va香蕉在| 中文精品在线| 欧美三级视频| 亚洲一二三区视频在线观看| 精品成人久久| 久久婷婷国产麻豆91天堂| 国产裸体写真av一区二区| 洋洋av久久久久久久一区| 亚洲少妇最新在线视频| 欧美大片免费观看在线观看网站推荐| 国产精品qvod| 一区二区三区免费看| 国产精品久久久久久户外露出| 中文亚洲视频在线| 国产精品狼人久久影院观看方式| 激情综合网激情| 亚洲欧美日韩中文视频| 国产精品久久久久久久久免费桃花| 99re亚洲国产精品| 国产亚洲精品久久久久久| 欧美午夜片欧美片在线观看| 欧美美女操人视频| 亚洲国产电影| 亚洲国产小视频在线观看| 国产精品久久久久久久久久ktv| 日韩亚洲在线| 国产精品美女一区二区| 先锋影音久久久| 亚洲精品国精品久久99热| 欧美日本精品| 久久精品中文字幕免费mv| 国产一区二区三区精品久久久| 蜜桃久久精品一区二区| 亚洲人成人一区二区在线观看| 欧美成人亚洲| 亚洲午夜久久久久久久久电影网| 国产欧美日韩精品a在线观看| 久久久久久穴| 亚洲欧洲另类国产综合| 欧美日韩精品免费看| 久久er精品视频| 激情国产一区二区| 欧美日韩国产欧美日美国产精品| 亚洲影院高清在线| 亚洲国产成人精品久久久国产成人一区| 欧美影院成年免费版| 亚洲国产一二三| 激情91久久| 欧美日韩亚洲一区三区| 欧美在线3区| 鲁鲁狠狠狠7777一区二区| 韩国精品主播一区二区在线观看| 欧美国产欧美亚州国产日韩mv天天看完整| 欧美日韩www| 久久久人成影片一区二区三区观看| 亚洲图片欧洲图片日韩av| 最新亚洲一区| 黄网站色欧美视频| 国产精品国产三级国产普通话蜜臀| 老司机一区二区| 亚洲伊人色欲综合网| 亚洲免费激情| 亚洲第一网站| 国产日本精品| 国产精品―色哟哟| 欧美精彩视频一区二区三区| 午夜在线a亚洲v天堂网2018| 国产美女扒开尿口久久久| 欧美日韩中文精品| 欧美精品久久久久久久久久| 久久国产精品毛片| 欧美一激情一区二区三区| 91久久在线播放| 亚洲影音先锋| 最新精品在线| 在线观看国产成人av片| 国产精品狼人久久影院观看方式| 欧美国产视频一区二区| 香蕉精品999视频一区二区| 一道本一区二区| 亚洲国产裸拍裸体视频在线观看乱了中文| 国产一区二区三区四区hd| 国产精品久久久久久久久免费樱桃| 欧美久久久久久蜜桃| 另类天堂视频在线观看| 久久久久久久久久久久久久一区| 午夜影院日韩| 午夜精品福利一区二区蜜股av| 亚洲国产一区二区精品专区| 国内精品一区二区| 国产伦精品一区二区三区免费| 欧美日韩一区二区三区| 欧美日韩中国免费专区在线看| 久久久久久网站| 久久婷婷久久一区二区三区| 久久激情综合| 久久9热精品视频| 在线一区二区日韩| 日韩亚洲在线| av不卡在线| 亚洲综合色网站| 亚洲视频一区| 午夜精品免费在线| 国产精品久久二区二区| 欧美精品综合| 日韩亚洲欧美成人| 一区二区免费在线观看| 亚洲无吗在线| 午夜久久久久久| 米奇777超碰欧美日韩亚洲| 亚洲欧美日韩综合aⅴ视频| 亚洲黄色一区二区三区| 夜夜夜精品看看| 中文一区字幕| 午夜激情综合网| 久久久久久一区二区三区| 免费欧美日韩国产三级电影| 欧美国产日韩亚洲一区| 欧美视频一区二区三区| 国产午夜精品理论片a级探花| 亚洲电影免费观看高清完整版在线观看| 亚洲黄色小视频| 99视频在线精品国自产拍免费观看| 激情亚洲成人| 久久久久久**毛片大全| 亚洲伊人一本大道中文字幕| 性做久久久久久免费观看欧美| 欧美成人a视频| 欧美日韩黄色大片| 国产视频自拍一区|